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Satellite based remote sensing of weather and climate: recent
achievements and future perspectives
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ABSTRACT: Spaceborne remote sensing provides valuable information about the state of the Earth-atmosphere system
and its components in an area-wide and continuous manner. Over the past 50 years a range of satellite platforms carrying
many different sensors has been constructed to monitor atmospheric parameters used in meteorological and climatological
studies, and the information retrieved from satellite-based sensors has greatly enhanced our understanding of the processes
and dynamics within the Earth-atmosphere system. The present paper gives an overview of existing satellites and sensors,
together with the developed algorithms to retrieve meteorological and climatological parameters. Furthermore, it gives an
outlook on new systems planned for the near future. Copyright  2011 Royal Meteorological Society
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1. Introduction

Satellite systems provide a unique opportunity to mon-
itor Earth-atmosphere system processes and parameters
continuously. In view of the great benefit provided by
spaceborne Earth-atmosphere remote sensing, there were
strong efforts to construct Earth observing satellite sys-
tems in the past. Satellite based observations of the Earth
and the atmosphere started with the first meteorologi-
cal satellite, the Television InfraRed Observation Satel-
lite (TIROS-1), launched in 1960. During the following
decades several satellite systems with different sensors
provided data for a wide range of atmospheric parame-
ters that enhanced our understanding of Earth-atmosphere
processes and dynamics. Nowadays, operational satellite
systems provide invaluable measurements of atmospheric
parameters at regular intervals on a global scale. Smith
et al. (1986) and Kidder and Vonder Haar (1995) give
an overview of Earth-atmosphere observing satellite sys-
tems. More recently, Kidd et al. (2009) outlined the sta-
tus of satellite based meteorological and climatological
research.

The present paper gives an overview of existing satel-
lite systems and the corresponding retrieval techniques
to derive the desired meteorological and climatological
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parameters. It starts with a review of existing platforms
and sensors. After the review of existing satellite sys-
tems and retrieval algorithms, satellite missions planned
and approved for the near future will be introduced. This
is followed by an overview of existing retrieval algo-
rithms, which is structured by the different measurement
parameters.

2. Satellite systems

2.1. Past and current satellite systems

Satellite based Earth-atmosphere observations exploit
geostationary (GEO) and low-Earth-orbiting (LEO) satel-
lite systems, providing data in different spatial and tem-
poral resolutions.

GEO satellite systems circulate the Earth at an alti-
tude of about 36 000 km above the equator. Their orbital
period is 24 h. Therefore, they appear to be station-
ary above a certain point above the equator, which
enable observations with a high temporal resolution of
15 or 30 min. Operational geostationary platforms are
the workhorses of meteorological nowcasting applica-
tions and are growing increasingly important for climate
research due to the long time series of GEO data globally
available.

Operational polar orbiting platforms (LEO) are com-
plementing the GEO system in the global weather satellite
system. They are frequently used to transfer sensors from
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experimental missions into operational use, which in a
next step, if technically and financially possible, might
become candidates for next generation GEO systems.
Table S1 gives an overview of past and current Earth-
atmosphere observing satellite systems.

2.2. Future perspectives of satellite meteorology

2.2.1. Geostationary platforms

Future GEO missions are primarily focusing on serving
the NWP and the climate research communities by striv-
ing for improvements of the systems while at the same
time warranting data and product continuity. Improve-
ments are concerned for:

• the spatial resolution, e.g. for local nowcasting and
to capture subpixel atmospheric phenomena from the
GEO orbit;

• the spectral and radiometric (e.g. the signal to noise
ratio) resolution to allow for new products and to boost
the accuracy of hitherto developed products to the
requirements of data assimilation in NWP models, and,

• the temporal resolution to observe atmospheric phe-
nomena with rapid life cycles.

Depending on the history of the specific satellite pro-
grammes, the operating agencies are currently develop-
ing second or third generation GEO missions which are
listed in Table I. Generally, all programmes continue to
focus on passive instruments and mainly two proven sen-
sor families: (1) multispectral narrow and broad band
imagers to retrieve data on radiation balance, clouds,
aerosol, cloud and water vapour (WV) motion, winds,
land and sea surface temperatures (LST/SST) as well
as Earth’s snow and ice cover, and, (2) atmospheric
sounding capabilities to retrieve vertical profiles, mainly
of temperature and humidity, but also water vapour
winds and trace gas information. For the third generation
imagers (Flexible Combined Imager (FCI) on Meteosat
Third Generation (MTG), partly also for Advanced Base-
line Imager (ABI) on GOES-R/Himawari-8), additional
bands will be introduced as a heritage of LEO missions as
e.g. MODIS: 0.444 and 0.510 µm (aerosol, ocean colour,
phytoplankton), 0.910 µm (atmospheric water vapour),
1.375 µm (cirrus clouds) and 2.260 µm (aerosol). Rapid
scan capabilities will be offered as well. Next genera-
tion GEO satellites will include sounding capabilities for
the first time, or change from narrow-band channel IR
radiometer solutions to more complex systems as spec-
trometer technology to improve accuracy and vertical res-
olution of the products develops. An IASI-like (Infrared
Atmospheric Sounding Interferometer) on LEO MetOP
(see Prunet et al., 1998; Blumstein et al., 2004) system,
the Interferometric Infrared Sounder (IIS), is intended for
launch on board the Chinese FY-4 GEO mission. A major
improvement will be the 10 channel Michelson Fourier
Transform spectrometer on MTG which will provide
hyper-spectral sounding information in two bands, a long

and a mid wave IR region with a high spatial resolution
of 4 km every half hour (Stuhlmann et al., 2005). As a
development of LEO instruments such as AIRS (Atmo-
spheric Infra-red Sounder on Aqua), the main challenge
for a transfer to a GEO system is to cope with the limi-
tations due to diffraction which might in the worst case
produce errors of up to 1 K in sensitive bands (Grandell
and Stuhlmann, 2007). A new sensor type which shall be
added to Meteosat and GOES third generation (MTG-
LI (Lightning Imager)/GOES-R – GLM (Geostationary
Lightning Mapper)) and to the Chinese second generation
FY-4 satellites is devoted to the detection and nowcasting
of lightning, also used as a proxy for severe convective
weather and the production of NOx . All three future mis-
sions will rely on measurements in the ionized oxygen
emission band at 777.4 nm (for the general technologies
refer to Koshak et al., 2000). Another novel feature will
be the GEO missions targeting atmospheric chemistry.
The first spectrometer sensor (0.4 nm resolution) will be
installed on board MTG as a development of EPS GOME
and ENVISAT SCIAMACHY. It will be dedicated to air
quality surveillance regarding emission plumes, aerosols
and atmospheric gases (e.g. O3, NO2, SO2, H2CO). Gas
retrieval is mainly conducted in the UV (290–400 nm)
region while cloud and aerosol information is analysed
in the oxygen A-Band region (755–775 nm). For fur-
ther information on technology and physical background
the reader may refer to Bovensmann et al. (1999). As not
yet specified, the Korean Meteorological Agency (KMA),
(a new player in the group of GEO mission operators),
is planning a second GEO atmospheric chemistry mis-
sion with its Trace Gas Monitor (TBC) on COMS-FO
B (Communication, Ocean and Meteorological Satellite),
launch projected for 2018. To date, passive microwave
(MW) instruments, which are a backbone for rainfall
retrieval techniques, are restricted to LEO missions. This
is due to the weak emitted MW signal of the Earth-
atmosphere system which is a challenge to detect at
GEO flight level (e.g. Joyce et al., 2004). The first MW
instrument in Geostationary Orbit is planned to fly on
China’s FY-4 M mission with the Microwave Sounder
(GEO-MWRI). Even though the instrument is not yet
defined it can be expected that it resembles the spec-
tral characteristics of the Micro-Wave Radiation Imager
(MWRI) currently flown on the second generation LEO
FY-3 mission (Zhang et al., 2006). The third generation
GOES-R series will additionally provide instruments for
observation of space weather with Space Environment
In-Situ Suite (SEISS), EUV and X-Ray Irradiance Sen-
sors (EXIS) and the Solar Ultraviolet Imager (SUVI), and
for measurements of the Earth’s geomagnetic field with
Magnetometer (MAG) (Krimchansky et al., 2004).

2.2.2. Low Earth orbit platforms

As stressed for GEO systems, next generation LEO-
missions also pursue the improvement of the spa-
tial, spectral and radiometric resolution and thus an
improvement of operational products for nowcasting and
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Table I. Major approved and planned next generation GEO missions.

Mission (agency), orbit Sensor Technology Launcha Priority products Improvement

FY-4 O (CMA/NSMC)
China

(1) Multi-channel Scan
Imaging Radiometer
(MCSI) (2) Interferometric
Infrared Sounder (IIS)
(3) Lightning Mapper (LM)

(1) 12-channel VIS/IR imager
(0.55–13.8 µm), x = 1–4 km
(2) IR
spectrometer/interferometer
(4.44–6.06 and 8.85–14.6 µm);
x = 8 (later 4) km (3) CCD
camera (777.4 nm, O2);
x = 10 km

2015 Cloud properties (1) Cloud
and WV motion winds (1)
Radiation components (1)
Rainfall rate (1)
Temperature/humidity
profiles (2) Profiles of WV
motion winds (2)

Three-axis stabilization
More powerful imager and
lightning mapper Sounding
capability

FY-4 M (CMA/NSMC)
China

(1) MicroWave Radiation
Imager (GEO-MWRI)

(1) To be defined; current
MWRI on LEO FY-3:
6-frequency, 12-channel MW
radiometer, (10.7–150 GHz,
V/H)

2015 Precipitation
Temperature/humidity
sounding Cloud liquid and
ice water

First MW imager on GEO

GOES-R
(NOAA/NASA) USA

(1) Advanced Baseline
Imager (ABI) (2) Space
Environmental In-Situ Suite
(SEISS) (3) Solar Ultra
Violet Imager (SUVI)
(4) Extreme Ultra
Violet/X-Ray Irradiance
Sensors (EXIS)
(5) Geostationary Lightning
Mapper (GLM)
(6) Magnetometer (MAG)

(1) 16-channel multispectral
VIS-IR imager (0.45–13.6 µm);
x = 0.5–2 km (2) 11-channel
instrument with magnetospheric
(MPS), energetic heavy ion
(EHIS), solar/galactic proton
sensor (SGPS) (30 eV to
4 MeV; 30 eV to 500 MeV; >

500 MeV) (3) 6-channel
imager, (0.9–32 nm)
(4) 3.channel irradiance Sensor
(5–127 nm) (5) 0.7774 µm
oxygen emission channel;
x = 10 km (6) ±1000 nT with
0.016 nT

2015 Aerosol optical depth (1)
Cloud properties (1)
Radiation components (1)
Rainfall rate (1) Columnar
water vapour (1)
Temperature and moisture
profiles (1) Motion winds
(1) LST/SST (skin) (1)
Snow cover (1) Energetic
heavy ions (2) Magnetic
electrons and protons (2)
Solar and galactic protons
(2) Solar imagery: X-Ray
(3) Solar flux: EUV, Flux:
X-ray (4) Lightning events
(5) Geomagnetic field (6)

Improved resolution (4X),
faster coverage (5 X), more
bands (3 X), better imagers
VIS inflight calibration
Continuous coverage of
total lightning flash rate
over land and water
Additional solar/space
monitoring Improved heavy
ion detection, adds low
energy electrons and
protons

HIMAWARI-8 (JMA)
Japan

(1) Advanced Baseline
Imager (ABI)

→GOES-R 2014 →GOES-R →GOES-R

INSAT-3D (IMA/ISRO)
India

(1) Imager (INSAT)
(2) Sounder (INSAT)

(1) 6-channel VIS/IR
radiometer (0.65–12 µm),
x = 1–8 km (2) 19-channel IR
radiometer + 1 VIS
(3.7–14.7 µm), x = 10 km

2011 Cloud properties (1) Cloud
and WV motion winds (1)
Radiation components (1)
Rainfall rate (1)
Temperature/humidity
profiles (2)

Meteosat Third
Generation (MTG)
(ESA/EUMETSAT)
Europe

(1) Flexible Combined
Imager (FCI) (2) Lightning
Imager (LI) (3) InfraRed
Sounder (IRS) (4) Ultra
Violet and Near Infrared
Sounder (UVN)

(1) 18-channel VIS/IR
radiometer, x = 0.5–2 km
(2) Narrow band (1.4 nm)
imager (777.4 nm); x = 10 km
(3) 10-channel Michelson
Fourier Transform
Spectrometer; x = 3–6 km; z
= 1–2 km (4) High-resolution
spectrometer (UV:290–400 nm;
VIS:400–500 nm;
NIR:755–775 nm); x = 10 km

2017 Loud properties (1) Full
disc lightning discharges (2)
WV 3-D wind vectors (3)
3-D temperature/humidity
fields (3) Pollution cloud
and plume detection (O3,
NO2, SO2 und H2CO) (4)
Aerosol profile (4) UV
radiation (4)

Improved MSG-
SEVIRI/HRV
Very-short-term nowcasting
of cloud development
Continuously full disc
lightning discharges Higher
resolution profiles Clear-sky
wind fields First time air
quality surveillance on GEO

a Tentative launch data, x, nominal horizontal resolution.

climate research, but also the implementation of new
operational products. Most LEO programmes have been
recently updated, such as, e.g., the FY-3 mission of
CMA (Zhang et al., 2006) and the Russian Meteor-M-
N1 (http://planet.iitp.ru/english/index eng.htm; accessed
24 March 2011).

The next updates of operational LEO systems to next
generation status are expected for the European and
the US-American programmes (see Table II). For the
latter, the second generation LEO mission Joint Polar
Satellite System (JPSS) will follow the NOAA series
after 19 satellites are launched. The payload will take
advantage of current experimental in-orbit LEO mis-
sions such as EOS-Terra and Aqua. The multi-purpose
imager represents a subset of the successful MODIS

sensor onboard Terra/Aqua going into operational uses
(Schueler and Barnes, 1998). It has the high potential to
observe cloud and retrieve their properties with higher
accuracy (Hutchison et al., 2005; Wong et al., 2007).
This is also the case for land surface parameters related
to climate, as vegetation index, snow and fires (Town-
shend and Justice, 2002) as well as land (LST) and sea
(SST) surface temperatures (Yu et al., 2005). The sen-
sor is also designed to trace aerosols and smoke plumes
where a novel feature will be the analysis of clouds and
land surfaces under very low light conditions which will
help to improve cloud products, for example, (Lee et al.,
2006). The key instrument to construct vertical profiles
of atmospheric temperature and moisture is an interfero-
metric sounding sensor, the Cross-track Infrared Sounder
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Table II. Major approved and planned next generation LEO missions.

Mission (agency), orbit Sensor Technology Launcha Priority products Improvement

Joint Polar Satellite
System (JPSS)
(NOAA/NASA) USA

(1) Visible/Infrared
Imager/Radiometer Suite
(VIIRS) (2) Cross-track
Infrared Sounder (CrIS)
(3) Advanced Technology
Microwave Sounder
(ATMS) (4) Ozone
Mapping and Profiler Suite
(OMPS) (5) Clouds and the
Earth’s Radiant Energy
System (CERES)

(1) 22-channel VIS-IR
radiometer (0.3–14 µm),
x = 0.4 km (2) Scanning
Fourier Transform IR
Spectrometer (3.9–15.4 µm);
x = 14 km (3) 22-channel MW
radiometer (23–183 GHz),
x = 16–75 km (4) Nadir total
column spectrometer
(300–380 nm) and nadir profile
spectrometer (250–310 nm,
x = 50–250 km; z = 5 km (up
to 60 km) (5) 3-channel
broadband imager
(0.3 > 50 µm), x = 10–20 km

2014 Cloud properties (1–3)
SST/LST (1, 2)
Precipitation type/rate (1–3)
Atmospheric temperature,
moisture and pressure
profiles and columnar
values (2, 3) Soil moisture
(3) Vertical/horizontal ozone
distribution (4) Components
radiation balance (5)

Continuation and
improvement of LEO
missions on e.g. TERRA,
AQUA, DMSP etc.
Day/night band for low
levels of VIS-NIR radiance
Higher (spatial, temporal,
and spectral) resolution
Higher radiometric
calibration and accuracy
More accurate soundings
NWP assimilation quality

Post-EPS
(ESA/EUMETSAT)
(Feasibility study
pending) Europe

(1) Visible/Infrared Imaging
(VII) (2) Low Light
Imaging (LLI) (3) Infrared
Sounding (IRS)
(4) Microwave Sounding
(MWS) (5) Radio
Occultation (RO) (6) Nadir
viewing UV/VIS/NIR -
SWIR Sounding (UVNS)
(7) Multi-viewing, -channel,
-polarization Imaging (3MI)
(8) Scatterometry (SCA)
(9) Microwave Imaging
(MWI) (10) Radiant Energy
Radiometry (RER)

(1) 16-channel multispectral
imager (0.44–13.4 µm)
(2) OLS-like;
radiometer(0.47–0.95 µm
photo-multiplier tube)
(3) IASI-heritage
(4) ATMS-like → JPSS
(5) Limb scanning, z = 0.5 km
(6) GOME-2, SCIAMACHY,
OMI heritage → to be specified
(7) Polder-like, nine-wavelength
radiometer with three
polarizations at four
wavelengths (0.44–0.9 µm;
20 nm width); x = 4 km
(8) ASCAT-like, side looking
C-band radar scatterometer
(5.255 GHz); x = 25 km
(9) MW radiometer AMSR-E
heritage (18.7–664 GHz) (10)
CERES-like → JPSS

2020 Cloud properties (1, 7,8)
Aerosol properties (1, 2, 6,
7) LST/SST, surface albedo
(1, 3, 7) Snow cover (1, 2)
Land surface (Vegetation,
fire) (1) Ocean colour (1,7)
Night-time cloud imagery
(2) Temperature/humidity
profile and humidity
columns (3, 4, 5, 8) Trace
gases (3, 6) Cloud liquid
water total column (4)
Bending angles profiles (5)
Ionospheric electron content
(5) Ozone profile and
column (6) Ocean surface
wind vectors (8) Soil
moisture (8) Snow
equivalent water (8) Sea-ice
properties (8, 9)
Precipitation (9) Radiation
balance components

High vertical resolution
sounders High spatial
resolution
Temperature/humidity
profile also under cloud
contamination More than
4000 occultation per day by
tracking GPS and Galileo
Focus on air quality
monitoring High frequency
MW for cloud products

a Tentative lauch data, x, nominal horizontal resolution.

(CrIS) (Bloom, 2001) in combination with the Advanced
Technology Microwave Sounder (ATMS) (Muth et al.,
2004). Kleespies (2007) stressed that ATMS can signif-
icantly improve temperature and moisture retrievals in
comparison to current in-orbit sounder technology only
if footprint matching is employed to use oversampled
ATMS observations. Advanced retrieval of ozone will
be warranted by the novel ozone mapping and profiler
suite (OMPS, Flynn et al., 2004) in conjunction with the
development of new algorithms particularly addressing
the greater spectral coverage and better height resolution
of the suite (Flynn et al., 2009).

The follow-on mission of the successful European
Meteorological Operational (MetOp) platform is still in
the planning stage which means that most instruments are
not yet specified. The Post-EPS feasibility study starts
in 2011 and concentrates on several missions which are
mostly developments of successful missions currently
onboard experimental LEO missions. The core instru-
ment will be a MODIS-like high-performance multi-
spectral imaging radiometer, the Visible-Infrared Imager
(VII) (Schmülling et al., 2010). Low light imaging is
also an important topic where a sensor will be most

likely adapted from NOAA OLS (Operational Linescan
System on DMSP; e.g. Elvidge et al., 1998; Cinzano
et al., 2000). A higher accuracy and vertical resolu-
tion will be achieved with Radio Occultation (RO) by
improving the GRAS sensor currently flying on MetOp
(Loiselet et al., 2000). One major focus of Post-EPS is to
bring hitherto experimental atmospheric chemistry mis-
sions onto an operational LEO platform. The Nadir view-
ing UV/VIS/NIR – SWIR Sounding (UVNS) unit will
be a development of successful SCIAMACHY and OMI
instruments and is mainly dedicated to trace gas cartog-
raphy of the atmosphere (Schlüssel et al., 2009). This is
also supported by the Multi-viewing, channel and polar-
ization imaging (3MI sensor), an instrument similar to
the POLDER instrument (Polarization and Directionality
of the Earth Reflectances) (Deschamps et al., 1994; King
et al., 1999). A further instrument transferred to opera-
tional application will be a device derived from the active
C-band scatterometer ASCAT, mainly for the retrieval of
Ocean surface wind vectors (Figa-Saldaña et al., 2002).
To improve quantitative precipitation (Nielsen and Long,
2009) and soil moisture (Njoku et al., 2003) retrievals,
as well as cloud and snow liquid water estimates, a
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microwave radiometer mission is proposed which will be
based on the AMSR-E instrument on board EOS-Aqua
(Parkinson, 2003).

2.2.3. Approved near future experimental missions

While the future operational GEO and LEO systems
mostly rely on passive instruments, experimental mis-
sions will be used particularly to develop active RADAR
and LIDAR sensors (Table III). The major aims of the
upcoming experimental LEO missions are to improve
atmospheric sounding of temperature and humidity, but
major attention is given to novel technologies to retrieve
rainfall and cloud properties and their vertical distri-
bution. Some of the missions only relying on passive
instruments are partly compatible to the next generation
operational LEO missions. The Japanese Space Agency
plans to launch two polar platforms of the Global Change
Observation Mission (GCOM), where the first satellite
GCOM-C will carry a second generation imager while the
second (GCOM-W) will be equipped with an Advanced
Scanning Microwave Radiometer (Sasaki and Naka-
gawa, 2009). The MODIS-like Second-Generation Global
Imager (SGLI) which offers 19 spectral channels has a
special feature, the three polarization angle (0, 60 and
120°) polarimeter. Polarization observations in the range
of 670 and 865 nm with tilting function will particularly
be used to improve the retrieval of aerosol properties
over land surfaces (Okamura et al., 2008; Tanaka et al.,
2009). The Advanced Microwave Scanning Radiometer-
2 (AMSR2) will be installed on GCOM-W. A major
advantage of AMSR2 is its large revolving space antenna
(2 m) and the ability to detect very weak MW signals
at an increased temporal resolution which will improve
the retrieval quality of precipitation and atmospheric
humidity. An additional 7.3 GHz channels will mitigate
radio-frequency interferences (Kachi et al., 2008). The
stratospheric wind interferometer for transport studies
(SWIFT) will not only measure stratospheric winds but
also ozone densities by means of the wind-induced phase
shifts of interferograms from atmospheric limb radiance
spectra in the vicinity of the vibration–rotation ozone
line at 8.82 µm (Shepherd et al., 2001; Rahnama et al.,
2006). A new satellite of the ESA’s Earth Explorer core
missions, ADM-Aeolus (Atmospheric Dynamics Mis-
sion) will measure vertical wind profiles from space.
The mission employs a high-performance Doppler wind
lidar based on direct-detection interferometric techniques
(refer to Stoffelen et al., 2005). Tan and Andersson
(2005) showed that, based on simulations, the gained
accuracy for both, the boundary layer and the free tropo-
sphere is sufficient for global data-assimilation systems.
As a development of recent satellites and instruments
such as Cryosat, MERIS and the improved AATSR (both
on Envisat), the European Sentinel-3 mission will observe
a wide range of land, ocean and atmospheric parameter in
the frame of the Global Monitoring for Environment and
Security (GMES) program of ESA. The core instrument
of the topography mission is the SRAL radar altime-
ter (Le Roy et al., 2010). The two-channel microwave

radiometer (MWR) aims at the analysis of ice and snow
(Tran et al., 2008). The Ocean Land Color Instrument
(OLCI) is planned as an improved successor to MERIS
while the Sea and Land Surface Temperature Radiome-
ter (SLSTR) provides data continuity from the previous
AATSR and ATSR-1/2 instruments. Two more SWIR
channels will support better clouds and aerosols screen-
ing while two further channels are added for global-scale
fire monitoring (Coppo et al., 2010). Three future mis-
sions are especially devoted to rainfall, cloud and aerosol
remote sensing. The first French/Indian mission, Megha-
Tropiques, relies on passive instruments and is restricted
to the tropics (from 23 °N to 23 °S) due to its inclined
orbit which, however, provides high temporal resolu-
tion, inevitably to study tropical convection with short
life cycles (Karouche and Raju, 2010). The core instru-
ment for rainfall retrievals, the MADRAS MW imager,
will be a development of the TRMM-TMI sensor. Com-
pared to TMI, higher MADRAS frequency channels at
89 and 157 GHz might help to improve the retrieval of
ice phase hydrometeors (Balaji et al., 2009). The humid-
ity sounder SAPHIR is designed to provide the humidity
profile (Eymard et al., 2001). This satellite will also carry
an ERB (Earth Radiation Budget) instrument called the
Scanner for Radiation Budget (ScaRaB) which has been
proven to deliver somewhat lower data quality than the
ERB CERES (JPSS) mission (Viollier et al., 2009). The
second future mission dedicated to rainfall retrieval is
the core satellite of the Global Precipitation Measure-
ment (GPM) mission (for GPM refer to Smith et al.,
2007). The satellite is a direct development of the TRMM
mission with its first precipitation radar in space. Conse-
quently, the GPM core harbours a passive microwave
imager (GMI) and dual-frequency precipitation radar
(DPR) (Flaming, 2005). GMI is similar to TRMM’s TMI
but will provide significantly improved spatial resolu-
tion thanks to a bigger 1.2 m diameter antenna (Bid-
well, 2005). The dual-frequency of the precipitation radar
(DPR) is a great step forward in comparison to the single-
frequency PR on TRMM. This shall allow the retrieval
of more accurate rain rates in areas of cold clouds which
are frequently characterized by solid precipitation with
deviating hydrometeor shapes (Nakamura et al., 2005).
The mission devoted to aerosol, clouds and rainfall is
one of ESA’s future Earth Explorer core missions Earth-
Care with its four instruments: an atmospheric backscatter
lidar, a cloud profiling radar, a multi-spectral imager and
a broad band radiometer (Bezy et al., 2005). A gen-
eral improvement compared to the Cloudsat mission’s
radar is the Doppler capability of EarthCare’s CPR. How-
ever, Schutgens (2008) showed with simulations that the
large forward motion of the Doppler cloud profiling radar
might cause biases in the observed Doppler speeds which
have to be corrected by respective algorithms. The syn-
ergy between the lidar and the cloud radar, especially, is
suggested to improve the retrieval of radiative and micro-
physical properties of clouds (Tinel et al., 2005).
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Table III. Approved experimental missions.

Mission (agency), orbit Sensor Technology Launcha Priority products Improvement

ADM-Aeolus (ESA) LEO (1) ALADIN (Atmospheric
laser Doppler instrument)

(1) Doppler Wind Lidar (355 nm),
x = 50 km, z = 0.5–2.5 km

2013 Vertical wind profiles
(0–30 km) Vertical profiles
of cloud properties Aerosol
optical depth and
distribution

Improved analysis of
circulation systems Provides
for the first time global wind
profiles Wind parameters
meet NWP assimilation
accuracy requirements

Chinook (CSA) LEO (1) SWIFT (Stratospheric
Wind Interferometer for
Transport Studies) (2) ARGO
(Atmospheric Research with
GPS Occultation)

(1) Doppler IR radiometer (at 9 µm),
x = 15–55 km, z = 3–5 km (2) IGOR
(Integrated GPS Occultation Receiver);
x = 8–160 km; z = 0.5 km

2011 Ozone concentration (1)
Stratospheric wind (1)
Bending angle (temperature,
humidity) (2)

Improved accuracy First time
global observation of
stratospheric winds
Assimilation to NWP

EarthCARE (ESA/JAXA)
LEO

(1) HSR (High Spectral
resolution lidar) (2) CPR
(Cloud Profiling Radar)
(3) MSI (Multi-Spectral
Imager) (4) BBR (Broadband
Radiometer)

(1) Lidar (355 nm), z = 100–300 m,
x = 0.1–10 km (2) Doppler millimeter
wave radar (94 GHz), z = 500 m,
x = 1–10 km (3) Multi-spectral imager
(seven bands, 0.6.12 µm), x = 1 km
(4) Two band (broadband SW and LW),
x = 10 km

2015 Vertical profiles aerosol
extinction Aerosol type
Vertical profiles clouds
properties Mass flux in
clouds Drizzle and
precipitation rates Vertical
radiative flux gradients

First space-borne radar with a
Doppler capability Higher
accuracy Parameters meet
NWP assimilation accuracy
requirements

Global Change
Observation Mission
(GCOM), GCOM-C
(Climate) (JAXA) LEO

(1) Second-generation Global
Imager (SGLI)

(1) 19-channel radiometer
(0.38–12 µm), x = 0.25–1 km

2014 Cloud properties Aerosol
properties Ocean colour
Vegetation index

Improves MODIS Polarimetry
function Forward/backward
function in red/NIR

Global Change
Observation Mission
(GCOM), GCOM-W
(Water) (JAXA) LEO

(1) Advanced Microwave
Scanning Radiometer-2
(AMSR2)

(1) MW radiometer with six
frequencies/12 channels (V/H)
(6.9–89 GHz); x = 5–10 km

2012 Precipitation Atmospheric
moisture Soil moisture,
snow depth SST Sea
surface wind speed

Largest revolving space
antenna Detects weak MW
signals Higher accuracy High
temporal resolution due to
revolving antenna

Global Precipitation
Measurement (GPM)
mission core satellite
(NASA/JAXA) LEO,
non-sun synchronous
orbit

(1) GPM Microwave Imager
(GMI) (2) Dual–frequency
Precipitation Radar (DPR)

(1) 13-channels (10–183 GHz),
x = 4.4–32.2 km (2) Ku-band
(13.6 GHz) and Ka-band (35.6 GHz)
precipitation radar; x = 5 km

2013 3-D cloud structure 3-D
rainfall and rain rates

Improves TRMM-TMI by
four high frequency channels
about 166 and 183 GHz
Improvement of TRMM-PR
by adding Ka-band radar
High temporal resolution; 3 h
global rain maps Higher
sensitivity for light rain and
solid precipitation detection

Megha-Tropiques (CNES,
ISRO) LEO, 20°
inclination above the
equator

(1) Microwave Analysis and
Detection of Rain and
Atmospheric Structures
(MADRAS) (2) Humidity
Sounder (SAPHIR)
(3) Scanner for Radiation
Budget Measurement
(SCARAB)

(1) Self-calibrating microwave imager,
5-channels (18.7–157 GHz), H + V
polarization; x = 6–40 km
(2) 6-channel passive microwave
humidity sounder (183.31 ± 12 GHz);
x = 10 km (3) Multi-spectral scanning
radiometer, 4-channel (0.5–12.5 µm);
x = 40 km

2011 Cloud condensed water
content Cloud ice content
Convective-stratiform cloud
discrimination Rain rate
Latent heat release
Integrated water vapour
content Radiative fluxes at
the top of the atmos-
phere Sea surface wind

High temporal sampling of a
MW system Can follow the
life cycle of tropical
mesoscale convective systems

National Polar-orbiting
Operational
Environmental Satellite
System (NPOESS)
(NOAA/NASA) LEO

(1) Visible/Infrared
Imager/Radiometer Suite
(VIIRS) (2) Cross-track
Infrared Sounder (CrIS)
(3) Advanced Technology
Microwave Sounder (ATMS)
(4) Microwave
Imager/Sounder (MIS)
(5) Ozone Mapping and
Profiler Suite (OMPS)
(6) Clouds and the Earth’s
Radiant Energy System
(CERES) (7) Space
Environment Monitor
(SEM-N)

(1) 22-channel VIS-IR radiometer
(0.3–14 µm), x = 0.4 km (2) Scanning
Fourier Transform IR Spectrometer
(3.9–15.4 µm); x = 14 km
(3) 22-channel MW radiometer
(23–183 GHz), x = 16–75 km
(4) 10-channel instrument (6–183 GHz;
4 VH polarized; 3 polarimetric),
x = 10-40 km (5) Nadir total column
spectrometer (300–380 nm) and nadir
profile spectrometer (250–310 nm,
x = 50–250 km; z = 5 km (up to
60 km) (6) 3-channel broadband imager
(0.3–50 µm), x = 10–20 km
(7) Special Sensor J5 (SSJ5) for
low-energy, Energetic Particle
Spectrometer (EPS) for medium-energy,
and omnidirectional detectors for
high-energy particles

2013 Cloud properties (1–4)
SST/LST (1,2) Precipitation
type/rate (1–4)
Atmospheric temperature,
moisture and pressure
profiles and columnar
values (2, 3, 4) Soil
moisture (3, 4)
Vertical/horizontal ozone
distribution (5) Components
radiation balance (6) Space
weather (7)

Continuation and
improvement of LEO
missions on e.g. TERRA,
AQUA, DMSP etc. Day/night
band for low levels of
VIS-NIR radiance Higher
(spatial, temporal, and
spectral) resolution Higher
radiometric calibration and
accuracy More accurate
soundings NWP assimilation
quality

Sentinel-3 (EUMETSAT)
LEO

(1) Synthetic Aperture Radar
Altimeter (SRAL)
(2) Microwave radiometer
(MWR) (3) Ocean Land
Color Instrument (OLCI)
(4) Land Surface Temperature
Radiometer (SLSTR)

(1) Dual-band Ku- (13.575 GHz) and
C-band (5.41 GHz), x = 0.3 km
(2) Two-channel microwave radiometer
(23.8, 36.5 GHz), x = 20 km
(3) Medium Resolution Imaging
Spectrometer, 21-channels UV to NIR;
x = 0.3–1.2 km (4) Dual viewing
technique, 9-channels (0.555–12 µm),
x = 0.5–1 km

2013 Ocean, ice, land and inland
water surface topography
(1) Integrated atmospheric
water vapour column (2)
Cloud liquid water content
(2) Ocean colour (3) Land
surface biophysical
properties (3) LST/SST (4)

Improvement Cryosat With
atmospheric correction
Improved MERIS Reduced
sunglint effect Improved
AATSR

a Tentative year of launch; x, nominal horizontal resolution, z, nominal vertical resolution; ESA, European; CSA, Canadian; JAXA, Japanese;
NASA, American; CNES, French; and ISRO, Indian Space Agencies. LEO, Low Earth Orbit; GEO, Geostationary Earth Orbit.
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3. Meteorological parameters

After the overview of past, current and future satellite
systems, the following section focuses on the respective
meteorological parameters most relevant for a better
understanding of the Earth-atmosphere system (see also
Table S2).

3.1. Radiation

Radiation energy and its spatio-temporal distribution
is the driver for atmospheric dynamics. To understand
weather and climate, measurements of the radiation
that enters and leaves the Earth-atmosphere system are
necessary. To provide these measurements, a succession
of satellite instruments have been developed (Table
S2). Satellite-based methods for estimating the long
wave radiation balance are reviewed in Schmetz (1989).
More recently, Loeb et al. (2007) summarized observed
radiation retrievals from different sensors.

The Earth’s radiation budget (ERB) operational prod-
uct at NOAA/NESDIS has a history since 1974. The ERB
consists of two components: the emitted long wave radia-
tion at the top of the atmosphere (TOA) (OLR: outgoing
long wave radiation), and the absorbed solar radiation,
(ASR: absorbed solar radiation or net solar radiation).
The algorithm was developed for the NOAA AVHRR
series. Its development and continuous improvements are
documented in Wydick et al. (1987), Ruff and Gruber
(1988) and Taylor (1990).

The ERBE instruments provided radiation flux infor-
mation at the top of the atmosphere (TOA) since 1984
(Barkstrom and Smith, 1986; Barkstrom et al., 1989).
Ellingson et al. (1989) developed a multispectral regres-
sion technique to estimate OLR using the HIRS radi-
ance observations. This algorithm was further adapted
for the Geostationary Operational Environmental Sounder
(GOES) (Ba et al., 2003), as well as for the GOES Imager
(Lee et al., 2004). ERBE data provided insights in the
great importance of clouds in regulating the radiation
budget (Ramanathan et al., 1989; Harrison et al., 1990).
As a result, the Clouds and Earth Radiant Energy System
(CERES) sensor was designed to provide radiation fluxes
at the surface and at levels throughout the atmosphere
and to investigate the cloud-radiation feedback on the
Earth’s climate system (Wielicki et al., 1996; Loeb et al.,
2001; Geier et al., 2003). Huang et al. (2008) and Sun
et al. (2010) used collocated AIRS hyperspectral radiance
measurements and CERES outgoing long wave fluxes to
estimate TOA OLR from AIRS radiance measurements.

3.2. Surface temperature

Retrievals of the sea surface temperature (SST) and
land surface temperature (LST) from space provide
information for interactions between ocean/land and
atmosphere such as evaporation processes and boundary
layer dynamics.

Satellite measurements of SST have been provided by
the NOAA/AVHRR with multiple infrared channels since

1981 (McClain et al., 1983, Table S2). SST and LST
retrievals using IR channels are based on the fundamental
theory, that differential spectral absorption in multiple
infrared channels is used to obtain absolute SST estimates
(McMillin and Crosby, 1984; McClain et al., 1985).
This so-called ‘split-window’ method is being used
successfully to retrieve the sea surface temperature from
satellite radiances where the emissivity is assumed equal
to unity (Njoku et al., 1985). It relies on the fact that the
atmospheric attenuation is greater in the 12.0 µm channel
than in the 11.0 µm channel. As the attenuation increases,
primarily as a result of increasing atmospheric water
vapour, the difference in the radiance measured in the two
bands increases. Since the surface source of the radiance
does not change between the bands, the differential shift
in sensor measured radiance originates from atmospheric
attenuation (Ouaidrari et al., 2002).

The split window method has been modified to retrieve
land surface temperature and several split-window equa-
tions have been developed for the land surface (e.g.,
McClain et al., 1985; Prata, 1994a, 1994b; Sobrino et al.,
1996). Modified versions of the split window algorithms
have been successfully applied to the LST retrieval from
the data observed by MODIS and SEVIRI (Sobrino and
Romaguera, 2004; Wan et al., 2004; Trigo et al., 2008).

Infrared measurements of SST can only be obtained
in cloud free conditions. Furthermore, IR estimates of
SST are also contaminated by high atmospheric aerosol
loading (Diaz et al., 2001). Because clouds and aerosols
are essentially transparent to microwave radiation at
frequencies below about 12 GHz, microwave remote
sensing has the potential to eliminate the atmospheric
contamination. Microwave estimates of SST are possible
because the surface radiance is proportional to SST at
frequencies between about 4 and 12 GHz. However,
SST retrievals at these frequencies must consider the
effects of wind on the emissivity of the sea surface
(Chelton and Wentz, 2005). High-quality microwave
SST data first became available from measurements at
10.7 GHz by the TRMM TMI (Wentz et al., 2000).
With its cloud-penetrating ability, AMSR-E provides a
unique dataset of global all-weather SST measurements
(Chelton and Wentz, 2005). AMSR-E retrievals of SST
are based on measurements of brightness temperature
at 6.9 GHz, which is more sensitive to SST than are
the 10.7-GHz measurements used in TMI retrievals.
The empirical retrieval algorithm for SSM/I matches
the SSM/I brightness temperature with buoy and/or
radiosonde measurements by means of a neural network
algorithm (Stogryn et al., 1994; Krasnopolsky et al.,
1995; Liu et al., 2001).

LST exhibits a strong diurnal variability that cannot
be captured from polar orbiting satellites that sample
each location approximately twice a day. Geostationary
satellites provide diurnal coverage, and allow derivation
of the LST diurnal cycle.
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3.3. Wind

Wind fields derived from satellites provide continuous
area-wide information about atmospheric dynamics in a
high spatial and temporal resolution. Such information
is of great benefit as an input parameter for numerical
weather prediction. Thus, atmospheric motion vectors,
derived by tracking atmospheric features (e.g. clouds or
water vapour) with satellites were one of the first satellite
data products assimilated in global numerical weather
prediction (Hayden et al., 1993; Eyre, 1997; Tomassini
et al., 1999; Menzel, 2001).

Satellite-based winds are derived from a variety of
active and passive techniques (see Table S2). A com-
prehensive review is given in Isaacs et al. (1986) and
Kidder and Vonder Haar (1995).

Winds at higher atmospheric levels are deduced by
tracking the motion of features in satellite imagery.
The tracking technique relies on passive optical satellite
data, preferably from geostationary systems (Fujita, 1968;
Hubert and Whitney, 1971). This technique estimates
the horizontal wind by determining the vector difference
of the location of a feature in successive images. The
method is applicable in any spectral region in which
distinctive features may be identified. Most popular are
the visible and infrared channels where clouds act as
tracers to be tracked (Allison et al., 1972; Fischer et al.,
1981; Le Marshall et al., 1985; Stewart et al., 1985).
The retrieved winds are called cloud motion vectors
(CMV). Other channels are the 6.7 µm water vapour band
(Laurent, 1993; Velden et al., 1997) or the 15 µm CO2

band (Menzel et al., 1983), for which the retrieved winds
are called atmospheric motion vectors (AMV).

Nowadays, satellite-based winds are retrieved from all
operational geostationary satellites. For polar latitudes,
Key et al. (2002) retrieved CMV/AMV from MODIS
data, which provide a temporal resolution of about
1 h in the Polar Regions. Horvath and Davies (2001a,
2001b) and Moroney et al. (2002) presented a retrieval
of CMV for the Multiangle Imaging SpectroRadiometer
(MISR) on the Terra satellite. These are derived by
matching cloud reflectivity patterns from three different
view angles. The across-track and along-track disparities
are considered to determine height of cloud tops and
the motion effects separately. The results are the cloud
motion components parallel to and orthogonal to the
satellite’s direction.

Wind fields near the surface can be determined from
the observed microwave emissivity of the ocean surface
(e.g., Wilheit and Chang, 1980; Meissner et al., 2001).
In constructing algorithms to retrieve ocean wind speed
from passive microwave radiometers, higher frequencies
(such as 36 GHz) rather than lower frequencies are
commonly used to retrieve low to moderate winds up to
25 m s−1 in no-rain areas, since the sensitivity to ocean
wind at higher frequencies is better than that at lower
frequencies (Wentz, 1983). Kidder et al. (1978, 1980)
developed a statistical method for the 55.45 GHz channel
of the Scanning Microwave Spectrometer on Nimbus-6

to study for the first time surface wind speed in tropical
cyclones. This was followed by algorithms developed by
Velden and Smith (1983), Velden (1989) and Velden et al.
(1991) who expanded the use of high-resolution data
from the Microwave Sounding Unit (MSU) on National
Oceanic and Atmospheric Administration (NOAA) polar-
orbiting satellites. Brueske and Velden (2003) extended
the work of Kidder et al. (1978) to estimate wind speed
in tropical cyclones from AMSU data, a successor of
the MSU.

WindSat is the first passive microwave polarimetric
radiometer. The objective of WindSat is to demonstrate
the capability of polarimetric, microwave radiometers to
measure near-surface ocean wind speed and direction
in all-weather conditions (Connor et al., 2004; Gaiser
et al., 2004). The WindSat wind retrieval algorithm uses
a variational technique in which the atmospheric state
vector is found, which minimizes the difference between
the satellite radiance measurements and the forward-
model equivalents (Bettenhausen et al., 2006). Kim and
Lyzenga (2008) proposed a method for estimating the
atmospheric transmittance and wind speed over the ocean
from WindSat data. They used a simplified model for the
ocean surface reflectivity to calculate both the surface
emissivity and the reflection of downwelling atmospheric
radiation.

Near-surface winds over oceans can also be derived
from microwave radar backscatter from the ocean (e.g.,
Cardone et al., 1983; Chelton and Freilich, 2005). The
backscattering co-efficient is mainly influenced by the
wind speed and the angle formed by the wind vector and
the satellite’s antenna direction. Wind speed and direction
can be deduced from a set of near-simultaneous measure-
ments of backscatter co-efficient at a single location for
different viewing angles. Therefore, scatterometer sen-
sors have several antennae, or a rotating antenna and
two radar beams in the case of the SeaWinds sensor
(Fichaux et al., 2005). The use of radar scatterometers
to measure the ocean surface wind vectors is well estab-
lished (Moore and Jones, 2004). Scatterometers such as
the Active Microwave Instrument (AMI) on the European
Remote Sensing (ERS) 1 and 2 satellites have observed
global ocean winds continuously since the early 1990s
(Fichaux et al., 2005; Adams et al., 2006). The utility
of QuikSCAT winds in the analysis and forecasting of
extra tropical cyclones and marine weather in the mid-
and high latitudes is documented by Atlas et al. (2001),
Chelton et al. (2006) and Von Ahn et al. (2006).

SeaWinds scatterometer data have been used for trop-
ical cyclone forecasting (Jones et al., 1999; Weissman
et al., 2003). The Advanced SCATterometer (ASCAT)
aboard MetOp was launched by EUMETSAT to measure
surface wind (Figa-Saldaña et al., 2002).

Synthetic Aperture Radar (SAR) combines the mea-
surement of a backscattering coefficient with the azimuth
Doppler analysis of the measured signal. This enables
measurement of backscattering coefficients with a high
spatial resolution (Fichaux et al., 2005).
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3.4. Water vapour

Water vapour is the principal greenhouse gas in the
atmosphere and a key compound of the global cli-
mate (Gedzelman et al., 2003). It is important for many
atmospheric processes, such as radiative transfer, cir-
culation dynamics (Hanisco et al., 2007; Strong et al.,
2007), cloud formation (Schmidt et al., 2005), precipita-
tion (Bowen and Revenaugh, 2003) and the greenhouse
effect (Schneider et al., 2006; Hartmann, 2002). Informa-
tion about the distribution and variability of atmospheric
water vapour is critical for understanding these processes
controlling the Earth radiative budget and the hydrologi-
cal cycle.

Several efforts have been made to use satellite datasets
to measure the spatio temporal distribution and variability
of atmospheric water vapour (see Table S2). A good
overview and summary can be found in Kley and Russel
(2001). Passive methods for retrieving water vapour
(or precipitable water vapour, the vertical integral of
the water vapour mixing ratio) exploit water vapour
absorption bands in three distinct spectral domains.
Methods based on solar reflectance channels rely on
absorption between about 0.9 and 1.0 µm (Gao and
Kaufman, 2003; Albert et al., 2005). Methods based
on thermal-infrared channels rely on absorption and
emission between about 6.5, 8.7 and 12 µm (Seemann
et al., 2003). Microwave techniques exploit water vapour
absorption lines at either 22.2 or 183.3 GHz (Engelen and
Stephens, 1999; Sohn and Smith, 2003).

Several studies showed that measurements in the
visible spectral region can be used to derive water vapour
total columns (e.g. Noel et al., 1999; Casadio et al.,
2000; Maurellis et al., 2000; Lang et al., 2003; Wagner
et al., 2003; Buchwitz et al., 2004). One of these retrieval
methods is the so-called Air Mass Corrected Differential
Optical Absorption Spectroscopy approach (e.g. Noel
et al., 1999, 2004, 2005, 2008) which also relies on water
vapour and molecular oxygen absorption between 688
and 700 nm to derive total column water vapour.

MODIS provides five near-infrared bands located
within and around the 0.94 µm water vapour band,
that are used to retrieve column water vapour amounts
(King et al., 2003). The retrieval relies on observations
of water vapour absorption of near-infrared solar radia-
tion reflected by the bottom surface and uses ratios of
water vapour absorbing bands (within the 0.94 µm water
vapour band) with atmospheric window bands at 0.86 and
1.24 µm to derive atmospheric water vapour transmit-
tances (King et al., 1992). Bennartz and Fischer (2001)
describe an algorithm to derive columnar water vapour
from backscattered solar radiation in the MERIS near-
infrared channels using radiative transfer simulations for
the MERIS 900 and 885 nm channels.

The water vapour absorption band at 6–7 µm of
NOAA/TOVS and its successor NOAA/ATOVS is used
to retrieve water vapour in the atmosphere (Chaboureau
et al., 1998 and references therein). Soden and Brether-
ton (1994) and Jackson and Bates (2001) used the GOES

6.7 µm channel to estimate atmospheric water vapour.
The NESDIS/CIMSS three-layer precipitable water prod-
uct integrates GOES sounding retrievals to provide a
measurement of the layer and total precipitable water in
clear and partly cloudy conditions (Schmit et al., 2002).

Several techniques for estimating precipitable water
vapour use data from two adjacent channels in the
infrared split-window region near 10–12 µm (GOES,
Birkenheuer and Gutman, 2005).

Milz et al. (2005) present water vapour profiles
obtained from infrared limb emission measurements
recorded by the Michelson Interferometer for Passive
Atmospheric Sounding (MIPAS) on ENVISAT. The
retrieval is based on constrained non-linear least squares
fitting.

Typical sensors for water vapour retrieval meth-
ods based on microwave wavelength radiances are
MSU/AMSU (Staelin et al., 1976), SSM/I or the SSM
Temperature and Water vapour Profiler (SSM/T)
(Schlüssel and Emery, 1990; Bauer and Schluessel,
1993). Grody et al. (1998) used radiative transfer sim-
ulations to derive total precipitable water vapour from
AMSU dual-frequency microwave channels. The opti-
mal channel combination and coefficients were obtained
by performing regression analysis on the simulated
AMSU measurements and standard sounding as well
as surface data. Houshangpour et al. (2005) devel-
oped a regression method to retrieve upper tropospheric
water vapour from AMSU radiances. Singh and Bhatia
(2008) propose a neural-network-algorithm using simu-
lated brightness temperatures at four frequencies, 23.4,
31.4, 50.3 and 89.0 GHz for the retrieval of precip-
itable water vapour from AMSU data. The method is
based on surface observations of the skin temperature
and ocean surface, wind speed and direction. Deeter
(2007) presents a method for retrieving precipitable
water vapour using observations from AMSR-E. The
method relies on a simple but accurate parameterization
which relates AMSR-E polarization-difference signals at
18.7 and 23.8 GHz to precipitable water vapour, liq-
uid water path and the surface emissivity polarization
difference.

3.5. Gases

As a response on the increasing human impact on the
evolution of the global climate and on the stratospheric
ozone layer much effort has been made to understand the
underlying chemical and physical processes and the role
of anthropogenic gas emissions. To fulfill this objective
there is a clear need for global observation of gas
emissions and concentrations in the Earth atmosphere
system (Nett et al., 2001). Satellite measurements are a
powerful tool for monitoring gas emissions, since the
whole globe is observed with a single instrument over
long periods (Beirle et al., 2010). Therefore, in response
to the identified need for global observations, several
satellite based instruments dedicated to the monitoring of
the lower and middle atmosphere have been embarked
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in the past (see Table S2). Satellite measurements of
atmospheric chemical constituents have enhanced our
understanding of how human activities affect climate in
the Earth system (Warner et al., 2010).

This section gives an overview of satellite based
measurements of gas emissions and concentrations in the
Earth atmosphere system.

3.5.1. Carbon dioxide (CO2 )

To predict the future carbon dioxide (CO2) concen-
tration in the atmosphere, and the resulting radiative
forcing of climate change, knowledge of current CO2

sources and sinks, their spatial distribution and vari-
ability is essential (Crevoisier et al., 2009b). Satellite
measurements of the distribution of global atmospheric
CO2 concentration can contribute to such knowledge.
Information on CO2 atmospheric distribution can be
retrieved from thermal infrared sounders (Chédin et al.,
2002, 2003; Crevoisier et al., 2004; Engelen et al., 2004;
Chahine et al., 2006; Maddy et al., 2008; Strow and
Hannon, 2008) and from near infrared remote sensing
(Buchwitz et al., 2005a; Barkley et al., 2007; Schneising
et al., 2008). The Atmospheric Infrared Sounder (AIRS)
together with the Advanced Microwave Sounding Unit
(AMSU) on board the NASA/Aqua satellite has brought
new insights to CO2 monitoring from space (Chahine
et al., 2006). A set of 43 AIRS channels, located in
the CO2 absorption bands, near 15 and 4.3 µm are
considered in the Optimum Sensitivity Profile method
(Crevoisier et al., 2003). These channels are character-
ized by a strong sensitivity to CO2 variations and a low
sensitivity to other atmospheric components and surface
characteristics.

3.5.2. Methane (CH4 )

Methane (CH4) is second only to carbon dioxide (CO2)
as an anthropogenic greenhouse gas (IPCC, 2007). How-
ever, the exact location, intensity and nature of methane
sources and sinks are still not fully elucidated. For these
reasons it is essential to have more knowledge of current
CH4 sources and sinks, their spatio-temporal distribution
and variability to make projections of future CH4 con-
centrations in the atmosphere (Crevoisier et al., 2009a).
To fulfill this task, several remote sensing instruments
have been embarked on satellite platforms to gain infor-
mation on the distribution of methane in various parts of
the atmosphere. For example, total columns of methane
have been retrieved from SCIAMACHY data (Buchwitz
et al., 2006; Carmo et al., 2006; Frankenberg et al., 2006,
2008). The SCIAMACHY methane distributions present
high concentrations in the tropical region, which are pos-
sibly related to methane emission from terrestrial plants
(Keppler et al., 2006). The CH4 retrieval algorithm for
AIRS is presented in Susskind et al. ( 2003). The atmo-
spheric temperature profile, water profile, surface tem-
perature and surface emissivity required as inputs are
derived from appropriate AIRS channels. For the CH4

retrieval, these data plus a first-guess profile of CH4 are

used as inputs to the forward model (Strow et al., 2003)
to compute the upwelling radiance (Susskind et al., 2003,
2006; Xiong et al., 2008). Ravazi et al. (2009) describe
a method to retrieve methane concentrations from IASI.
The inversion model is based on the Optimal Estima-
tion Method (OEM) (Rodgers, 2000). Space-borne instru-
ments working in a limb viewing geometry (e.g. MIPAS)
add information on the vertical distribution of methane
but are only sensitive from the upper troposphere to
higher altitudes (Park et al., 2004; Raspollini et al., 2006;
De Maziere et al., 2008).

3.5.3. Carbon monoxide (CO)

In recent years, extensive CO observations from a
number of satellite platforms have yielded a global
view of the CO distribution (George et al., 2009).
Limb-sounders such as MIPAS/ENVISAT (Funke et al.,
2007) or MLS/AURA (Pumphrey et al., 2007; Livesey
et al., 2008) provide vertically resolved profiles for the
mid/high-troposphere.

The MOPITT CO retrieval algorithm employs a non-
linear optimal estimation method to solve iteratively for
the CO profile, producing a result which is statistically
most consistent with both the satellite-measured radiances
and a priori information (Pan et al., 1998; Deeter et al.,
2003). The current AIRS CO physical retrieval algorithm
uses radiances in the 4.58–4.50 µm region and seeks to
minimize the weighted difference between the clear col-
umn radiance observations and the radiance computed
using the five AIRS forward model (SARTA) (Strow
et al., 2003) by varying the geophysical state (Susskind
et al., 2003).

3.5.4. Ozone (O3 )

The first spaceborne instruments for ozone measure-
ments were the Solar Backscatter Ultraviolet (SBUV)
and Total Ozone Mapping Spectrometer (TOMS) on
NASA’s Nimbus-7 satellite (Heath et al., 1975). The
Solar Backscattered Ultraviolet model 2 instrument
(SBUV/2) on the National Oceanic and Atmospheric
Administration’s NOAA-11 satellite has been providing
global measurements of the total column ozone and the
ozone profile since 1988 (Planet et al., 1994; Hilsenrath
et al., 1995).

Takahashi et al. (1992) present a method for the
derivation of the horizontal distribution of total ozone
amounts from the brightness temperature data obtained
by the HIRS/2 sensor on board the NOAA satellites.
Chance et al. (1991, 1997) extended the ozone profile
information to lower altitudes, including the troposphere,
by using high spectral resolution hyperspectral data from
GOME. Since then, several physically based retrieval
algorithms were developed to retrieve ozone profiles from
GOME radiances (Munro et al., 1998; Hoogen et al.,
1999; Hasekamp and Landgraf, 2001; van der A et al.,
2002; Liu et al., 2005). The operational algorithm for the
retrieval of total ozone column from the GOME-2/MetOp
is the GOME-2 Data Processor. In GDP the ozone slant
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columns are derived with a standard Differential Optical
Absorption Spectroscopy retrieval (Loyola et al., 1997;
Burrows et al., 1999; Spurr et al., 2005; van Roozendael
et al., 2006; Valks and Loyola, 2008).

3.5.5. Nitrogen dioxide (NO2 )

Satellite observation of tropospheric NO2 columns started
in 1995 with the Global Ozone Monitoring Experiment
(GOME-1) (Burrows et al., 1999). By using NO2 data
retrieved from GOME the influence of biomass burning,
high lightning activity or soil emissions on the global
distribution of tropospheric NO2 is detectable (e.g. Leue
et al., 2001; Richter and Burrows, 2002; Beirle et al.,
2004; Jaegle et al., 2004). These observations are contin-
ued with GOME-2 (Callies et al., 2000), the SCanning
Imaging Absorption spectroMeter for Atmospheric CHar-
tographY (SCIAMACHY) (Bovensmann et al., 1999)
and the Ozone Monitoring Instrument (OMI) (Levelt
et al., 2006).

For OMI the standard NO2 retrieval algorithm uses the
Differential Optical Absorption Spectroscopy technique
(Platt, 1994) to determine the slant column densities by
nonlinear least squares fitting in the 415–465 nm window
(Boersma et al., 2002; Bucsela et al., 2006; Celarier
et al., 2008). Boersma et al. (2007) present a new near-
real time technique for OMI to retrieve tropospheric NO2

columns. The technique is based on a combined retrieval-
assimilation-modelling approach for tropospheric NO2

from the GOME and SCIAMACHY satellite instruments
(Boersma et al., 2004).

3.5.6. Nitrogen monoxide (NO)

Data from GOME have also been used to retrieve
global NO column amounts to study the behaviour of
stratospheric NO (Wenig et al., 2004). Burrows et al.
(1999) presented early results from GOME, which indi-
cate enhanced NO over the populated areas of the Eastern
United States and Europe. A new generation of satellite
instruments now provides measurements of NO at spatial
resolutions that exceed GOME resolutions by factors of
seven or more (e.g. SCIAMACHY; Bovensmann et al.,
1999).

3.5.7. Nitric acid (HNO3 )

Global distributions of HNO3 in the stratosphere have
been obtained from a series of limb-sounders operating
in the infrared or millimetre spectral range. The first
global observations of HNO3 were based on the Limb
Infrared Monitor of the Stratosphere (LIMS) launched
on the Nimbus 7 spacecraft (Gille et al., 1980; Gille
and Russell, 1984; Gille et al., 1984). The longest and
the most complete observations of HNO3 were measured
by the Microwave Limb Sounder (MLS) on board the
Upper Atmosphere Research Satellite (UARS) between
1991 and 1998 (Santee et al., 1995, 1999; Waters et al.,
1999). These observations are complemented by MLS on
the Aura satellite since 2004 (Santee et al., 2004; Urban

et al., 2009), as well as by MIPAS (Stiller et al., 2003;
Wang et al., 2007).

Two additional global HNO3 observing instruments
have recently been launched. The first is the Atmospheric
Chemistry Experiment Fourier Transform Spectrometer
(ACE-FTS) (Bernath et al., 2005) and the second is a
follow-on version of the UARS MLS instrument that was
also launched on the EOS Aura satellite (Waters et al.,
2006; Santee et al., 2005, 2007).

3.5.8. Sulphur dioxide (SO2 )

Satellite-based SO2 observations were first performed
using the Total Ozone Mapping Spectrometer (TOMS)
(Krueger, 1983). This was followed by other satellite sen-
sors as GOME, SCIAMACHY and OMI (e.g. Krueger
et al., 1995; Eisinger and Burrows, 1998; Carn et al.,
2004; Richter et al., 2006; Yang et al., 2007; Krotkov
et al., 2008).

TOMS, GOME and OMI algorithms use reflected ultra-
violet sunlight to determine column SO2 amounts (Prata
et al., 2007). The Differential Optical Absorption Spec-
troscopy technique (Platt, 1994) has been successfully
employed for SO2 measurements on global and regional
scales (e.g. Chance, 1998; Martin et al., 2002; Palmer
et al., 2003; Wittrock et al., 2006; Lee et al., 2008).

Sulphur dioxide has a strong spectral absorption region
centred near 7.4 µm, and a second, weaker, absorption
region located near 8.7 µm (Ackerman et al., 2008).
Spectral signature methods using measurements at 7.3,
8.5, 11, and 12 µm from the High-Resolution Infrared
Radiation Sounder (HIRS) have been used successfully
in detecting volcanic plumes (e.g. Baran et al., 1993;
Ackerman and Strabala, 1994; Ackerman, 1997; Yu and
Rose, 2000; Prata et al., 2003). High spectral resolution
observations from AIRS are also used to analyse SO2

plumes from volcanoes (e.g. Carn et al., 2005; Prata
and Bernardo, 2007). Prata et al. (2007) used AIRS
measurements to infer volcanic SO2 concentrations in the
upper troposphere. The algorithm relies on the strong SO2

absorption feature near 7.3 µm and takes into account
interference from water vapour across the band.

3.5.9. Sulphur monoxide (SO)

The first quantitative SO concentration data for a major
volcanic eruption was obtained from the TOMS for the El
Chichon eruption in 1982 (Krueger, 1983). All significant
eruptions since 1978 have now been measured by the
series of TOMS instruments (Bluth et al., 1992, 1993;
Krueger et al., 1995, 2000; Schnetzler et al., 1997; Carn
et al., 2003). Greatly improved sensitivity concerning
volcanic and anthropogenic SO detection is provided
by GOME and SCIAMACHY full spectrum UV data
(Eisinger and Burrows, 1998; Bovensmann et al., 1999;
Burrows et al., 1999). Infrared detection of volcanic SO
has also been demonstrated with AIRS data (Carn et al.,
2005), but IR sensors have low sensitivity to tropospheric
and boundary layer SO emissions.
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3.6. Profiles

Temperature sounding instruments on board polar-
orbiting satellites provide high spatio-temporal resolu-
tion and enable a more reliable analysis of long term
atmospheric temperature trends. Since 1978 atmospheric
temperatures for the lower troposphere to the stratosphere
have been retrieved through combined measurements
in the 15 µm carbon dioxide (CO2) absorption band
from the High-Resolution Infrared Radiation Sounder
(HIRS) and in the oxygen (O2) absorption band around
60 GHz from the Microwave Sounding Unit (MSU) on
board National Oceanic and Atmospheric Administra-
tion (NOAA) operational polar-orbiting satellites (Auman
et al., 2003; Chung et al., 2010). In 1998 the MSU was
replaced by the Advanced Microwave Sounding Unit
(AMSU). The combination of HIRS/3, AMSU-A and
AMSU-B constitutes the current operational sounding
system of the National Oceanic and Atmospheric Admin-
istration (NOAA) (Auman et al., 2003). With channels
in the oxygen absorption band, AMSU-A is designed
to retrieve the atmospheric temperature profiles. AMSU-
B module makes measurements in the vicinity of the
strong water vapour absorption line at 183 GHz and is
used for atmospheric water vapour sounding. Several
retrieval techniques have been developed for temper-
ature and/or humidity sounding with AMSU-A/B and
other microwave radiometers measurements (see Table
S2). Radiation measurements from layers as high as
the lower stratosphere (Channel 1: 14.7 µm) down to
the surface (Channel 8: 11.0 µm) from GOES Sounder
enable to derive vertical variations of temperature, mois-
ture, and total column ozone (Smith, 1983; Hayden,
1988; Ma et al., 1999; Li et al., 2001). The operational
MODIS atmospheric profile algorithm uses 12 infrared
bands with wavelengths between 4.47 and 14.24 µm
that are related to MODIS infrared band radiances cal-
culated from more than 8400 global radiosonde pro-
files of temperature, moisture and ozone (King et al.,
2003).

Weisz et al. (2007) present an AIRS alone single field
of view retrieval algorithm to simultaneously retrieve
temperature, humidity and ozone profiles under all
weather conditions. A fast cloudy radiative transfer model
accounting for clouds of various phases, cloud parti-
cle sizes and optical thicknesses was used to simu-
late cloudy radiances representing the regression train-
ing set.

The HIRDLS algorithm to retrieve atmospheric tem-
perature and humidity profiles is based on the opti-
mal estimation solution technique for inverse problems
(Rodgers, 2000) that relates forward radiative transfer
model calculated radiances with those observed (Khos-
ravi et al., 2009).

Amato et al. (2009) propose a retrieval algorithm that
uses a statistical strategy based on dimension reduction
for the IASI instrument to retrieve atmospheric profiles
of temperature, water vapour and ozone.

3.7. Aerosols

Aerosols in the troposphere are a major climate forc-
ing parameter, due to the direct and indirect aerosol
effect (Twomey et al., 1984; Kaufman and Nakajima,
1993; Ramaswamy, 2001). Despite this importance there
are still significant uncertainties concerning the physi-
cal and optical properties of tropospheric aerosols and
their interaction with global climate (IPCC, 2007). This
is mainly due to the inadequate quantitative knowledge
of global aerosol characteristics and their temporal vari-
ability (Bates et al., 2006; Penner et al., 2006; Li et al.,
2009). To evaluate the aerosol radiative effects together
with the magnitude and the potential variability of the
aerosol climate forcing it is therefore essential to mon-
itor aerosols on the global scale (Kiehl and Briegleb,
1993; Taylor and Penner, 1994). In this context, passive
and active satellite sensors have been used to retrieve
global distributions of aerosol properties (see Table S2).
Overviews of existing retrieval algorithms can be found
in King et al. (1999), Yu et al. (2006), Mishchenko et al.
(2007), Fishman et al. (2008), and Tanré (2010).

The most relevant parameters to characterize aerosol
properties and distribution and that are accessible from
satellite data are the aerosol optical depth (AOD), a
measure of the integrated aerosol load through the
atmosphere, and the Angstrom Exponent (AE), which
is related the spectral dependence of the AOD and
is a measure for the column integrated aerosol size
distribution (Tanré, 2010).

Satellite-based AOD retrieval has been successfully
applied over oceans by using the low reflectance of
oceans at solar wavelengths in the red and near-infrared
spectral regions (Griggs, 1983; Stowe et al., 1997; Tanré
et al., 1997).

Aerosol retrieval over land is more complicated due
the higher and more variable surface reflectance. Since
the measured signal consists of sunlight reflected by
both the Earth’s surface and the aerosol layer, some
assumptions about the surface reflectance properties and
aerosol properties have to be made to separate the
aerosol contribution to the signal from that of the surface
(Kaufman et al., 2002). Algorithms for the successful
AOD retrieval over land were developed by e.g. Kaufman
and Sendra (1988), Fraser et al. (1992), and Kaufman
et al. (1997).

The first satellite based aerosol studies used data from
geostationary satellites (GOES, METEOSAT), or from
polar orbiting platforms (NOAA/AVHRR series) (e.g.
Fraser et al., 1984; Husar et al., 1997). The near-daily
global coverage from the MODIS AOD retrieval provides
a high temporal resolution and uses multiple MODIS
channels and separate algorithms for ocean (Tanré et al.,
1997) and land (Kaufman et al., 1997; Remer et al.,
2005). The algorithms are continuously validated and
updated (Hsu et al., 2004; Levy et al., 2005, 2007; Li
et al., 2007; Remer et al., 2007).

The additional angular information from the MISR
AOD retrieval (Diner et al., 2005; Martonchik et al.,
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2009) allows reduction of algorithmic assumptions and
retrieval bias (Kahn et al., 2007). The MISR product
consists of the AOT, Angstrom exponent and aerosol
type retrieved over both land and the oceans (Mishchenko
et al., 2007).

The ATSR-2 and AATSR sensors on ENVISAT
uses two view directions in a wide spectral range
(0.55–1.65 µm) to measure aerosol properties and their
distribution (Veefkind et al., 1998, North et al., 1999;
Grey et al., 2006). The retrieval of aerosol properties
over land from POLDER is based on polarized reflectance
measurements (Deuze et al., 1999, 2000). Scattering by
aerosol particles generates highly polarized light (Deuze
et al., 1999) which makes the polarized satellite radi-
ances more sensitive to the presence of aerosols. The
new generation of satellite based high spectral resolu-
tion infrared sounders AIRS and IASI are well suited to
retrieve aerosol properties such as optical depth, altitude
and mean particle size (Pierangelo et al., 2005; Peyridieu
et al., 2010). The algorithms are based on the fact that
long wave channels (8–12 µm) are sensitive to both the
AOD and the altitude of the dust layer while short wave
channels (around 4 µm) are essentially sensitive to the
dust optical depth. The aerosol algorithm for OMI (Torres
et al., 2007) makes use of the full UV-to-visible spec-
tral coverage to derive spectral aerosol extinction optical
depth. It uses forward calculations for a number of micro-
physical aerosol models defined by the size distribution
and the complex refractive index as well as the AOD and
the aerosol layer height.

Algorithms to retrieve aerosol vertical structure by
using CALIPSO CALIOP has been successfully imple-
mented by Winker et al. (2007), Kim et al. (2008),
and Vaughan et al. (2009). Chand et al. (2008) exam-
ine two techniques for CALIPSO to deduce AOD and
the Angstrom exponent directly from aerosol effects on
light transmissions. Josset et al. (2008) retrieve AOD
over oceans by combining CALIOP and Cloudsat mea-
surements (Stephens et al., 2002). The combination of
spectral measurements from MODIS with active lidar
measurements provided by CALIPSO CALIOP allows
the derivation of information on the aerosol size distribu-
tion along the vertical atmospheric path (Kaufman et al.,
2003; Leon et al., 2003).

3.8. Clouds

3.8.1. Cloud classification

Identifying clouds in satellite imagery is an important
first step in the retrieval of both surface and atmospheric
properties (Berendes et al., 1999). In the past, various
cloud classification techniques have been developed for
the different satellite systems and for a variety of
purposes (see Table S2). Pankiewicz (1995) and Bankert
et al. (2009) give an extensive review of satellite based
cloud classification research.

Most commonly, spectral and/or textural features are
used for cloud classification. Spectral features are gen-
erally more important. They make use of the informa-
tion on the cloud radiance in different spectral bands.
Some of the most commonly used methods in this
category include threshold based schemes (e.g. Bendix
et al., 2004), multi-spectral approaches and histogram
schemes. Famous threshold-based algorithms developed
for NOAA-AVHRR data are the APOLLO scheme (Saun-
ders, 1986; Saunders and Kriebel, 1988; Kriebel et al.,
2003) or the multispectral cloud analysis scheme SCAN-
DIA (Karlsson, 1989, 1996). Approaches using one-
dimensional and/or multidimensional histogram tech-
niques are presented by Desbois et al. (1982), Simmer
et al. (1982), Phulpin et al. (1983), and Kärner (1997).

Because of their physical importance, spectral features
have proven to be effective and simple. However, they
also encounter some problems because of the spectral
similarities of certain objects such as ice cloud and snow.
Other factors, such as moisture in the atmosphere, may
also alter the multi-spectral characteristics and thus affect
the classification result (Kaur and Ganju, 2008).

Textural features distinguish different cloud types by
the spatial distribution characteristics of gray levels
corresponding to a region in one specific channel. While
the spectral characteristics of clouds may change, their
textural properties are often distinct and tend to be less
sensitive to the effects of atmosphere (Kaur and Ganju,
2008). For example, Coakley and Bretherton (1982)
applied tests on spatial coherence to detect cloud-filled
pixels and classify the cloud type (low, medium, high
cloud, thin cirrus).

Fuzzy logic and neural network approaches were
explored for cloud classification e.g. by Baum et al.
(1997), Lewis et al. (1997), Miller and Emery (1997),
Tian et al. (1999), McIntire and Simpson (2002), and
Ghosh et al. (2006).

The National Oceanic and Atmospheric Administration
Clouds from AVHRR algorithm incorporates multispec-
tral information, channel differences, and spatial differ-
ences and applies a series of sequential decision tree tests
(Stowe et al., 1991, 1999) to identify cloud-free, mixed
and cloudy regions in the image. The MODIS cloud mask
algorithm uses a series of sequential cloud detection tests
to indicate a level of confidence that MODIS is observ-
ing a clear-sky scene (Ackerman et al., 1998; King et al.,
2003; Platnick et al., 2003; Frey et al., 2008).

Breon and Colzy (2000) describe a cloud screening
algorithm for the POLDER instrument over land surfaces.
Four tests are applied to the measurements. First a
threshold on the 0.44 µm reflectance after atmospheric
correction is applied. Second a similar but smaller
threshold is applied only over targets with significant
spectral variation. Third the surface pressure is compared
to an estimate derived from two POLDER channels
centred on an oxygen absorption band. The final test
makes use of POLDER polarization capabilities and seeks
the presence of a rainbow generated by water clouds.
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There are some algorithms to identify multilayer
clouds with passive imagers. Pavolonis and Heidinger
(2004) developed a pixel-level algorithm applicable to
AVHRR and MODIS that uses ratios and differences of
reflectances and brightness temperatures in various bands.
The algorithm introduced by Baum et al. (2000) and
Nasiri and Baum (2004) is a statistically based algorithm
for MODIS that retrieves a multilayer cloud probabil-
ity for a box area of user defined size. The MODIS
operational multilayer cloud detection algorithm con-
siders the difference between above-cloud precipitable
water obtained from using the 0.94 µm band and above-
cloud precipitable water retrieved from the CO2 slic-
ing–derived cloud-top altitude to determine whether the
cloud is multilayered (Wind et al., 2010).

Specific algorithms have been developed for the detec-
tion of fog/low stratus (NOAA: Bendix, 2002; MODIS:
Bendix et al., 2006; MSG: Cermak and Bendix, 2007,
2008) and ground fog (Bendix et al., 2005; Cermak and
Bendix, 2011) on different LEO and GEO sensors, using
VIS to MIR spectral information.

3.8.2. Cloud properties

Clouds play in important role in the atmospheric radiation
budget and in the global hydrological cycle and, since
they act as a key modifier of the global climate, the IPCC
emphasized the need for more global measurements on
cloud properties to investigate the corresponding radiative
fluxes and forcing (IPCC, 2007).

Typical cloud parameters that can be derived from
satellite data and that are useful for such investigations
comprise cloud-top height, cloud optical thickness, cloud
effective particle radius, cloud liquid water path and
cloud phase (Reuter et al., 2009).

Several techniques for the retrieval of cloud-top pres-
sure/height (CTP/CTH) have been developed (see Table
S2). The most common technique is to obtain a satellite-
based measure of the thermal cloud-top brightness tem-
perature. These temperature measurements are obtained
in the infrared window wavelength of 10–12 µm and
are compared to corresponding temperature profile data
to determine the cloud-top height (Fritz and Winston,
1962; Smith and Platt, 1978). Another approach, known
as the CO2 slicing technique, considers the cloud’s emis-
sion within the carbon dioxide (CO2) absorption chan-
nels around 14 µm to derive the cloud-top tempera-
ture (Wielicki and Coakley, 1981; Menzel et al., 1983,
2002). The cloud-top height is inferred by comparing the
retrieved cloud-top temperature with corresponding atmo-
spheric temperature and humidity profiles (Frey et al.,
1999). The CO2 slicing technique has a long tradition.
It was first applied to the High Resolution Infrared
Radiometer Sounder (HIRS; Wylie and Menzel, 1999)
and the Geostationary Operational Environmental Satel-
lite (GOES) sounder (Menzel et al., 1992; Menzel and
Purdom, 1994).

A further method, which is applied to Medium-
Resolution Imaging Spectrometer (MERIS) data, is based

on measurements of the cloud-reflected solar radiation
within the oxygen A band around 761 nm (Fischer and
Grassl, 1991).

The MISR CTH retrieval is based on cloud detection
by cameras at two different angles and positions. The
height of the cloud relative to the surface is calculated
from the apparent change in position (Diner et al., 1999;
Moroney et al., 2002; Muller et al., 2002; Chae and
Sherwood, 2010).

The CALIPSO cloud data product provide the number
of vertical cloud layers and the cloud top and cloud
base height for each of these layers (Stubenrauch et al.,
2010). The cloud profiling radar (CPR) of the CloudSat
mission (Stephens et al., 2002; Mace et al., 2007) also
provides information on vertical cloud layer structure.
For a complete picture of the vertical cloud structure,
the Cloudsat Geometrical Profiling Product (Mace et al.,
2007; Marchand et al., 2008) and the CALIPSO Vertical
Feature Mask (Vaughan et al., 2004) have been merged
into a combined Radar-Lidar Geometrical Profile Product
(Mace et al., 2009).

Cloud microphysical retrievals using visible and near-
infrared channels rely on the fact that the reflection
function at the non-absorbing wavelength is mainly a
function of the cloud optical thickness, and the reflec-
tion at an absorbing wavelength is largely determined by
the effective radius. The retrieval techniques are based
on the 1-D radiation concept where a cloud is regarded
as a plane-parallel, vertically and horizontally homoge-
neous layer which completely covers a remotely sensed
picture element. The general principles of inversion the-
ory in terms of cloud microphysics retrievals are pre-
sented and discussed by Twomey and Seton (1980). The
retrieval of cloud optical properties from multispectral
satellite data include studies by Arking and Childs (1985),
Twomey and Cocks (1989), Nakajima et al. (1991) and
Minnis et al. (1992a, 1992b). Satellite-based algorithms
to retrieve cloud properties generally use some kind of
look-up table (LUT) approach (e.g. Nakajima and King,
1990; Han et al., 1994; Nakajima and Nakajima, 1995).
Pre-calculated radiative transfer results are iteratively
matched with actual measured values in the visible and
near-infrared channels.

Various algorithms have been developed to retrieve
cloud optical thickness and cloud effective particle radius.
Most of the retrieval techniques have been developed for
optical sensors aboard polar-orbiting satellites (e.g. King
et al., 1997; Platnick et al., 2003). Techniques are also
available for geostationary satellite systems (e.g. Han
et al., 1994; Feijt et al., 2004; Roebeling et al., 2006,
2008).

Chang and Li (2002, 2003) proposed a technique to
estimate the vertical profile of droplet effective radius
for water clouds using multispectral near-infrared mea-
surements from MODIS. The underlying principle of the
retrieval technique is that radiance measurements at dif-
ferent near infrared wavelengths possess different pene-
tration depths inside the cloud, providing information on
the vertical profile of the effective radius. Kokhanovsky
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et al. (2005) present a cloud retrieval algorithm, which
is based on the two-wavelength semi-analytical cloud
retrieval algorithm for the liquid water path and the cloud
particle size determination proposed by Kokhanovsky
et al. (2003). Kokhanovsky et al. (2006) developed a new
technique to identify mixed-phase clouds and clouds with
supercooled water droplets. The technique uses AATSR
and SCIAMACHY data and is based on measurements
of the backscattered solar light at wavelengths 1.55 and
1.67 m in combination with cloud brightness temperature
measurements at 12 µm. Greenwald et al. (1997) derived
the first estimates of the cloud liquid water path and the
droplet effective radius for marine stratocumulus clouds
using the GOES-8 imager.

For cirrus clouds there are also algorithms depending
only on the infrared channels (Ackerman et al., 1990;
Strabala et al., 1994). Yang et al. (2007) use a bispectral
technique based on pre-calculated lookup tables of ice
cloud radiances to infer the optical thickness and effective
particle size of an ice cloud from the MODIS measure-
ments during daytime.

The polarization characteristics in the visible and near-
infrared spectral region from POLDER can be used to
retrieve cloud properties (Chepfer et al., 1998, 1999;
Breon and Colzy, 2000; Masuda et al., 2002). Liou
and Takano (2002) demonstrated that information on ice
crystal shape and crystal orientation can be inferred from
the reflected polarization patterns.

Night time algorithms for cloud property retrievals are
also available (Baum et al., 1994, 2003; Minnis et al.,
1998; Perez et al., 2000; Wong et al., 2007; Merk et al.,
2010). Generally, these algorithms are based on the con-
cept of effective emissivity (Platt and Stephens, 1980;
Liou et al., 1990). Because of the exponential relation-
ship between optical depth and emissivity the maximum
retrievable optical thickness is about 6–8 (Liou et al.,
1990; Minnis et al., 1998). Han et al. (2009) developed a
new IR technique based on direct radiative transfer calcu-
lations, which extends the range of the retrievable optical
depth and enables the use of instantaneous atmospheric
profiles for improving retrieval accuracy. Compared to
other passive remote sensing instruments, the high spec-
tral resolution of IR vertical sounders such as the AIRS
leads to especially reliable properties of cirrus with opti-
cal depth as low as 0.1, day and night (e.g. Stubenrauch
et al., 1999, 2006; Kahn et al., 2007).

Retrievals of cloud liquid water path (LWP) using
visible and near infrared channels depend on the
assumed droplet size distribution and its vertical varia-
tion. These techniques are prone to non-plane parallel and
solar/viewing geometry effects in retrieving microphysi-
cal cloud properties (Varnai and Marshak, 2002; Marshak
et al., 2006; Kato and Marshak, 2009). Retrieval tech-
niques relying on passive microwave observations are
prone to uncertainties in cloud temperature, surface emis-
sivity, atmospheric absorption and the assumed tempera-
ture/humidity structure of the lower atmosphere, as well
as to the effects of sub-field-of-view clouds (Greenwald

et al., 2007; Stephens and Kummerow, 2007; Horvath
and Gentemann, 2007; Zuidema and Joyce, 2008).

A great variety of LWP retrieval algorithms have been
introduced since the first SSM/I was launched (e.g., Petty,
1990; Bauer and Schluessel, 1993; Greenwald et al.,
1993; Liu and Curry, 1993; Lin and Rossow, 1994; Weng
and Grody, 1994; Jung et al., 1998).

Wentz and Meissner (2000) use the liquid-sensitive
37 GHz channel measurements of AMSR-E to retrieve
LWP products. Zhao and Weng (2002) developed an
algorithm to derive cloud ice water path and ice particle
effective diameters from AMSU measurements. Both
parameters are related to the ice particle scattering
parameters, which are determined from the AMSU 89
and 150 GHz measurements. The ratio of the scattering
parameters measured at two frequencies provides a direct
estimate of the ice particle effective diameter.

Hu et al. (2009) introduced an improved cloud phase
determination algorithm using the active system
CALIPSO. Based on theoretical and modelling studies,
the algorithm differentiates cloud phases by using the
spatial correlation of layer-integrated attenuated backscat-
ter and layer-integrated particulate depolarization ratio.
Yoshida et al. (2010) introduce a method for discriminat-
ing cloud particle types for CALIOP on CALIPSO. The
authors theoretically estimated the relationship between
the depolarization ratio and cloud extinction on the basis
of the backward Monte Carlo method.

3.9. Precipitation

Precipitation is a key factor of the global water cycle
and affects all aspects of human life. Because of its great
importance and its high spatial and temporal variabil-
ity, the correct spatio-temporal detection and quantifica-
tion of precipitation has been one of the main goals of
meteorological satellite missions. Precipitation retrieval
from satellite data can provide area-wide information in
regions for which data from rain gauge or radar networks
are sparse or unavailable (Kuligowski, 2002). During
the last decades several satellite-based rainfall retrieval
algorithms have been developed (see Table S2). A com-
prehensive overview of existing satellite-based rainfall
retrieval methods can be found in Kidder and Vonder
Haar (1995), Kidd (2001), Levizzani et al. (2001), Leviz-
zani (2003), Scofield and Kuligowski (2003), Anagnostou
(2004), Stephens and Kummerow (2007), and Kidd and
Levizzani (2011). An overview of existing retrieval tech-
niques based on passive microwave sensors can be found
in Wilheit et al. (1994), Petty (1995), Kummerow et al.
(2001), Levizzani et al. (2002), Weng et al. (2003), and
Joyce et al. (2004). Regarding explanations of the Trop-
ical Rainfall Measuring Mission (TRMM) precipitation
radar (PR), the reader is referred to Iguchi et al. (2000)
and Ferreira et al. (2001). The following overview is
arranged by the complexity of the algorithms according
to Barrett and Martin (1981).

Cloud index methods use thresholds for IR cloud-
top temperature to detect rain areas, to which a rainfall
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rate is assigned. The most popular cloud index method
is the Geostationary Operational Environmental Satellite
(GOES) precipitation index (GPI; Arkin and Meisner,
1987), which uses a cloud-top temperature of 235 K as
a threshold to delineate precipitating clouds. A constant
rainfall rate is assigned to these raining pixels.

Feature-based methods rely on the assumption that the
relationship between the satellite cloud-top brightness
temperature and surface rainfall rate is not unique for
most pixel-based rainfall estimation algorithms. Feature-
based classification schemes use IR cloud-top temper-
ature to classify different cloud types. The relation-
ship between cloud top temperature and rainfall rate
is retrieved for respective classified cloud types (e.g.
Wu et al., 1985; Hsu et al., 2002; Bellerby, 2004). The
Precipitation Estimation from Remotely Sensed Infor-
mation Using Artificial Neural Networks (PERSIANN)
Cloud Classification System algorithm by Hong et al.
(2004) first separates 10.7 µm cloud images into dis-
tinctive cloud patches and then extracts different cloud
features. The cloud patches are clustered into subgroups,
which the rainfall rate is assigned to as a function of
cloud-top IR temperature.

Multispectral methods are based on the assumption
that precipitating clouds have a high VIS reflectivity and
a cold IR cloud-top temperature, which is ideally valid
for deep convective clouds. A prominent example is the
‘RAINSAT’ algorithm developed by Lovejoy and Austin
(1979) and Bellon et al. (1980). Lensky and Rosenfeld
(1997) and Rosenfeld and Lensky (1998) used the 3.7 µm
reflectance and the 11 µm brightness temperature to
detect rain areas and estimate rainfall rates. Capacci and
Porcu (2009) present a daytime surface rain-rate classifier
for MSG SEVIRI, based on artificial neural networks
trained with data from ground based radar networks. The
GOES multispectral rainfall algorithm (Ba and Gruber,
2001) combines information from five channels for the
detection of precipitating cloud areas. The rainfall rate
is assigned by the product of rainfall probability and
mean rainfall rate, calculated as a function of the 11 µm
temperatures.

Life cycle methods consider the temporal variabil-
ity of convective systems and the involved precipitation
processes. Griffith et al. (1978) used the cloud-top tem-
perature difference between two consecutive scenes as
a measure for the activity of convective clouds. Negri
et al. (1984) classified different life cycles of convective
clouds based on a single scene and attained comparable
results to Griffith et al. (1978).

Cloud model techniques try explicitly to consider the
physical processes that clouds undergo. The assigned
rainfall rates are based on numerically simulated cloud-
top temperatures and the corresponding rainfall rate (Gru-
ber, 1973; Wylie, 1979). Based on studies of Adler and
Mack (1984), Adler and Negri (1988) developed the
Convective Stratiform Technique (CST) for subtropical
convective systems which has been successfully applied
also to tropical rain systems (Bendix, 1997). The CST

has become a widely used and intensively validated tech-
nique.

Despite the variety of existing satellite-based rainfall
retrieval techniques, most retrieval schemes developed
for Geostationary Earth Orbit (GEO) systems rely on a
relationship between IR cloud-top temperature, rainfall
probability and rainfall rate. Such IR retrievals are appro-
priate for convective clouds that can easily be identified
by their cold cloud-top temperature in the IR channel (e.g.
Levizzani et al., 2001; Levizzani, 2003), but show con-
siderable drawbacks concerning the detection and quan-
tification of rain from stratiform clouds in connection
with extratropical cyclones (e.g. Ebert et al., 2007; Früh
et al., 2007). Such precipitating clouds are characterized
by relatively warm and spatially homogeneous cloud-top
temperatures that differ insignificantly from raining to
non-raining regions. Therefore, retrieval techniques based
solely on IR cloud-top temperature lead to an underesti-
mation of the detected rain area and to uncertainties con-
cerning the assigned rainfall rate (e.g. Ebert et al., 2007).

To overcome these drawbacks, several authors suggest
using optical and microphysical cloud parameters derived
from multispectral data of new generation satellite sys-
tems to improve rainfall retrievals (e.g. Ba and Gruber,
2001; Lensky and Rosenfeld, 2003a, 2003b; Nauss and
Kokhanovsky, 2006, 2007; Thies et al., 2008a, 2008b,
2008c; Roebeling and Holleman, 2009; Küehnlein et al.,
2010). They could show that cloud areas with a high opti-
cal thickness and a large effective particle radius possess
a high amount of cloud water and are characterized by
a higher rainfall probability than cloud areas with a low
optical thickness and a small effective particle radius.

Microwave radiances are related more directly to pre-
cipitation rates. Rainfall retrievals using data from satel-
lite microwave radiometers are more physically based on
the relationship between the observed microwave bright-
ness temperatures and the available liquid water within
the cloud (Levizzani et al., 2007). Different microwave
sensors have been used in the past for satellite-based
rainfall retrieval. Among them there are the Tropical
Rainfall Measuring Mission (TRMM) Microwave Imager
(TMI), the Special Sensor Microwave Imager (SSM/I),
and the Advanced Microwave Scanning Radiometer
(AMSR). Since the early Special Sensor Microwave
Imager (SSM/I) retrievals a number of algorithms have
been developed. Prominent SSM/I based rainfall retrieval
techniques are the NOAA/NESDIS algorithm (Grody,
1991; Ferraro and Marks, 1995; Ferraro, 1997; McCol-
lum and Ferraro, 2003; Dinku and Anagnostou, 2005) and
the Goddard scattering algorithm (Adler et al., 1994).

The most recent rainfall retrieval algorithms rely on
the 98 and 150 GHz window channels of AMSU data
(e.g. Weng and Grody, 2000; Bennartz et al., 2002; Zhao
and Weng, 2002; Chen and Staelin, 2003; Ferraro et al.,
2005). Di Tomaso et al. (2009) propose a technique
based entirely on the observations made by AMSU/B.
The method incorporates the measurements at 89 and
150 GHz (window channels) and the signal received
in the 183 GHz water vapour band (opaque channels).
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The differences between the measurements are analysed
through radiative transfer simulations for the estimation
of precipitation over both land and water surfaces and
are related to rain rate values in different atmospheric
scenarios. The Goddard Profiling algorithm (GPROF;
Kummerow et al., 2001) is one of the most successful
techniques in this category. The GPROF algorithm is an
inversion-type algorithm providing estimates of instanta-
neous rainfall rates, the vertical structure of precipitation
and the associated latent heating. The algorithm is based
on large databases of cloud model derived profiles which
are used for radiative transfer calculations at cloud model
resolution (Kummerow and Giglio, 1994; Kummerow
et al., 2001; Masunaga and Kummerow, 2005).

Mitrescu et al. (2010) developed a technique to
retrieve light precipitation from CloudSat’s millimetre-
wavelength Cloud Profiling Radar (CPR) measurements.
The radar model relies on the description of clouds and
rain particles in terms of a drop size distribution func-
tion. Berg et al. (2010) use a combination of rainfall
estimates from the 13.8-GHz TRMM PR (Iguchi et al.,
2000) and the 94 GHz CloudSat Cloud Profiling Radar
(Haynes et al., 2009) to assess the distribution of rain-
fall intensity over tropical and subtropical oceans. The
PR provides the total rain volume because of its abil-
ity to estimate the intensity of all but the lightest rain
rates, while the higher sensitivity of the CloudSat radar
provides estimates of drizzle and light rain.

While satellite-based rain rate estimates are reliable
and operational (Olson et al., 1996, 2006; Ferraro et al.,
2005), the measurement of snowfall rates from space is
a relatively new field (Chen and Staelin, 2003; Kongoli
et al., 2003; Liu, 2004; Skofronick-Jackson et al., 2004;
Noh et al., 2006). One major challenge associated with
retrieving snowfall rates are the complex macrophysical
and microphysical features of snow clouds (Kim et al.,
2008). Kim et al. (2008) present a physical model to
retrieve snowfall rate over land using brightness tempera-
ture observations from AMSU-B at 89, 150, 183.3, 183.3
and 183.3 GHz.

Many algorithms show encouraging results by com-
bining data from IR and PMW sensors (e.g. Adler
et al., 1993; Kummerow and Giglio, 1995; Miller et al.,
2001b; Todd et al., 2001; Turk et al., 2003; Huffman
et al., 2007; Bellerby et al., 2009; Hsu et al., 2009).
The self-calibrating multivariate precipitation retrieval
(Kuligowski, 2002) is another multisensor approach,
which adds the dimension of being calibrated in real
time against rain rates from PMW sensors. Other retrieval
techniques developed in the past several years, are the
Climate Prediction Center (CFC) morphing algorithm
(CMORPH; Joyce et al., 2004), the Naval Research Lab-
oratory Global Blended-Statistical Precipitation Anal-
ysis (NRLgeo; Turk and Miller, 2005), the Passive
Microwave-Calibrated Infrared algorithm (PMIR; Kidd
et al., 2003), and the Precipitation Estimation from
Remotely Sensed Information Using Artificial Neural
Networks (PERSIANN; Sorooshian et al., 2000). Adler
et al. (2000, 2003) describe a technique to use TRMM

combined PR-TMI measurements to adjust geostationary
IR data (the TRMM Adjusted Geostationary Operational
Environmental Satellite Precipitation Index (AGPI)).
Layberry et al. (2006) introduce a high-resolution mul-
tiplatform multisensor satellite rainfall product for south-
ern Africa. The microwave infrared rainfall algorithm
(MIRA) combines high spatial and temporal resolution
Meteosat IR data with infrequent SSM/I overpasses. A
transfer function relating Meteosat thermal infrared cloud
brightness temperatures to SSM/I rainfall estimates is
derived using collocated data from the two instruments
and is then applied to the full coverage of the Meteosat
data. The TMPA 3B42RT product (Huffman et al., 2007)
is a near-real-time precipitation rate product at time and
space scales. This product makes use of TRMM PR/TMI
observations, along with high quality passive microwave-
based rain estimates from three to seven polar-orbiting
satellites (e.g., AMSR-E, SSMI/DMSP, AMSU-A), and
all the geostationary IR sensors (e.g., Meteosat, GOES,
GMS). The combined quasi-global rain map at 3 h res-
olution is produced by using TRMM to calibrate the
estimates from all the other satellites and then combining
all the estimates into the TMPA final product.

4. Conclusions

Operational satellite systems provide valuable informa-
tion on atmospheric parameters at regular intervals on
a global scale. This satellite-based information about
the Earth-atmosphere system and its components greatly
enhance our knowledge and understanding of the pro-
cesses and dynamics within the Earth-atmosphere system.

The current paper presents the development of meteo-
rological satellites and techniques to retrieve information
for weather forecast and climate research, ranging from
the beginning of meteorological remote sensing to the
near future of approved next-generation satellite systems.
Successful instruments from experimental LEO systems
have been improved and transferred to the next generation
of operational LEO systems, while proven instruments
from operational LEO systems have made it on board
follow-up GEO systems.

Future satellite systems must sustain the observational
capabilities of key global climate parameters. On the
one hand this involves the improvement and further
development of operational missions, critical for routine
weather observation and numerical weather forecast. On
the other hand this also implies the continuation of
existing and established systems to assure the provision
of long-term data sets for climate monitoring.

Beside the numerical weather prediction and cli-
mate monitoring, another important field of applica-
tion is the global hydrological cycle. In this context
improved observation capabilities concerning the water
cycle and the interactions of its respective components
are needed. A further important topic is the investiga-
tion of CO2 sources and sinks as well as the analysis
of other greenhouse gases. In this context observations
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on regional scales with high accuracy are still of major
priority.

Supporting information

The following supporting information is available as part
of the online article:
Table S1. Existing LEO and GEO satellite systems and
meteorological parameters.
Table S2. Overview of meteorological parameters retrieved
from satellite based sensors.
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rath J, Kleinböhl A, Toon G, Piccolo C. 2007. Validation of MIPAS
HNO3 operational data. Atmospheric Chemistry and Physics 7:
4905–4934.

Warner JX, Wei Z, Strow LL, Barnet CD, Sparling LC, Diskin G,
Sachse G. 2010. Improved agreement of AIRS tropospheric carbon
monoxide products with other EOS sensors using optimal estimation
retrievals. Atmospheric Chemistry and Physics 10: 9521–9533.

Waters JW, Froidevaux L, Harwood RS, Jarnot RF, Pickett HM,
Read WG, Siegel PH, Cofield RE, Filipiak MJ, Flower DA, Holden
JR, Lau GK, Livesey NJ, Manney GL, Pumphrey HC, Santee ML,
Wu DL, Cuddy DT, Lay RR, Loo MS, Perun VS, Schwartz MJ,
Stek PC, Thurstans RP, Boyles MA, Chandra KM, Chavez MC,
Chen GS, Chudasama BV, Dodge R, Fuller RA, Girard MA,
Jiang JH, Jiang Y, Knosp BW, LaBelle RC, Lam JC, Lee KA,
Miller D, Oswald JE, Patel NC, Pukala DM, Quintero O, Scaff DM,
Van Snyder W, Tope MC, Wagner PA, Walch MJ. 2006. The Earth
Observing System Microwave Limb Sounder (EOS MLS) on the
aura satellite. IEEE Transactions on Geoscience and Remote Sensing
44: 1075–1092.

Waters JW, Read WG, Froidevaux I, Jarnot RF, Cofield RE, Flower
DA, Lau GK, Pickett HM, Santee ML, Wu DL, Boyles MA,
Burke JR, Lay RR, Loo MS, Livesey NJ, Lungu TA, Manney GL,
Nakarnura LL, Perun VS, Ridenoure BP, Shippony Z, Siegel PH,
Thurstans RP. 1999. The UARS and EOS Microwave Limb Sounder
(MLS) experiments. Journal of the Atmospheric Sciences 56:
194–218.

Watson IM, Realmuto VJ, Rose WI, Prata AJ, Bluth GJS, Gu Y,
Bader CE, Yu T. 2004. Thermal infrared remote sensing of volcanic
emissions using the moderate resolution imaging spectroradiometer.
Journal of Volcanology and Geothermal Research 135: 75–89.

Wei C, Hung WC, Cheng KS. 2006. A multi-spectral spatial
convolution approach of rainfall forecasting using weather satellite
imagery. Advances in Space Research 37: 747–753.

Weissman DE, Bourassa MA, O’Brien JJ, Tongue JS. 2003. Calibrat-
ing and validating the QuikSCAT/Sea Winds radar for measuring rain
rate over the ocean. IEEE Transactions on Geoscience and Remote
Sensing 41: 2814–2820.

Weisz E, Li J, Li J, Zhou DK, Huang HL, Goldberg MD, Yang P.
2007. Cloudy sounding and cloud-top height retrieval from AIRS

Copyright  2011 Royal Meteorological Society Meteorol. Appl. 18: 262–295 (2011)



Satellite based remote sensing of weather and clime 295

alone single field-of-view radiance measurements. Geophysical
Research Letters 34: L12802.

Weng F, Grody NC. 1994. Retrieval of cloud liquid water using the
special sensor microwave imager (SSM/I). Journal of Geophysical
Research 99: 25535–25552.

Weng F, Grody NC. 2000. Retrieval of ice cloud parameters using a
microwave imaging radiometer. Journal of the Atmospheric Sciences
57: 1069–1081.

Weng FW, Zhao L, Ferraro R, Poe G, Li X, Grody NC. 2003.
Advanced Microwave Sounding Unit (AMSU) cloud and
precipitation algorithms. Radio Science 38: 8068–8083.
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